Ott | Bohner | Deusch

Mathematik kompetenzorientiert zur Fachhochschulreife

Formelsammlung

Merkur-BN: **1623**

Merkur Verlag Rinteln

Formelsammlung

Erhebung und Bewertung von Daten

Relative Häufigkeit h
$$(x_i) = \frac{\text{absolute Häufigkeit von } x_i}{\text{Stichprobenumfang}} = \frac{H(x_i)}{n}; \ 0 \le h(x_i) \le 1$$

Histogramm

Rechteckshöhe in einem Histogramm: Häufigkeitsdichte

Die Summe der Inhalte der Rechtecksflächen beträgt 1.

Lagemaße

Arithmetisches Mittel (Mittelwert): $\overline{x} = \frac{\text{Summe aller Beobachtungswerte } x_i}{\text{Anzahl n der Beobachtungswerte } x_i}$ Zentralwert (Median)

für eine ungerade Anzahl n der Beobachtungswerte: $x_{Med} = x_{n+1}$

für eine gerade Anzahl n der Beobachtungswerte: $x_{\text{Med}} = \frac{1}{2} \left(x_{\underline{n}} + x_{\underline{n}+1} \right)$

Streuungsmaße

Varianz:

 $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$ (auch s²)

x: Mittelwert; xi: i-ter Beobachtungswert; n: Anzahl der Merkmalsträger

Standardabweichung:

 $\sigma = \sqrt{Varianz}$

(auch s)

Umgang mit Zufall und Wahrscheinlichkeit

Definition der Wahrscheinlichkeit

Ein Zufallsexperiment besitzt die Ergebnismenge S. Eine Funktion P, die jedem Ereignis E eine reelle Zahl P(E) zuordnet, heißt Wahrscheinlichkeitsverteilung, wenn gilt:

(1) $P(E) \ge 0$

Nichtnegativität

(2) P(S) = 1

Normiertheit

(3) $P(A \cup B) = P(A) + P(B)$; A, B \subseteq S und A \cap B = \emptyset Additivität

Der Funktionswert P(E) heißt Wahrscheinlichkeit von E.

Folgerungen:

Für das **unmögliche Ereignis** setzt man

 $P(\emptyset) = 0.$

Gegenwahrscheinlichkeit

 $P(\overline{A}) = 1 - P(A)$

Additionssatz

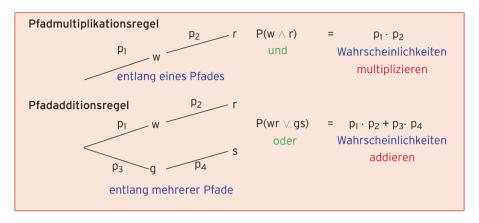
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Laplace-Experiment

Laplace-Wahrscheinlichkeit (Wahrscheinlichkeit bei Gleichverteilung)

$$P(A) = \frac{Anzahl der für A günstigen Ergebnisse}{Anzahl der möglichen Ergebnisse}$$

Berechnung der Wahrscheinlichkeiten am Baumdiagramm



Kombinatorik

Fakultät:
$$n! = n \cdot (n-1) \cdot ... \cdot 2 \cdot 1$$
 gelesen: n Fakultät

Binomialkoeffizient:
$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot (n-2) \cdot ... \cdot (n-k+1)}{1 \cdot 2 \cdot ... \cdot k}$$
 gelesen: n über k

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Permutationen: Mögliche Anordnung aller n Elemente einer Menge nl: Anzahl der Permutationen, wenn die n Elemente untereinander verschieden sind.

Anzahl der Stichproben bei k Ziehungen aus einer Urne mit n verschiedenen Kugeln:

	mit Zurücklegen	ohne Zurücklegen
geordnete Stichprobe Anzahl der Variationen aus k Elementen	n ^k Jedes der k Elemente kommt beliebig oft vor.	$\frac{n!}{(n-k)!}$ = $n \cdot (n-1) \cdot (n-2) \cdot \cdot (n-k+1)$ Jedes der k Elemente kommt nur einmal vor.
ungeordnete Stichprobe Anzahl der Kombinationen aus k Elementen		(n (k) Jedes der k Elemente kommt nur einmal vor.

Mithilfe der Kombinatorik werden Anzahlen berechnet, damit kann dann die Wahrscheinlichkeit, z.B. $P = \frac{g}{m}$ (bei Gleichverteilung), bestimmt werden.