Mathematik — Jahrgangsstufen 1 und 2 Erhöhtes und grundlegendes Anforderungsniveau

Berufliches Gymnasium Baden-Württemberg

Seite	Verbesserung		
60	Lehrbuch Seite 140		
	9 Wendepunkt: $W(2 \mid 0)$ f''(2) = 0: $t = -12Funktionsterm: f(x) = x^3 - 6x^2 + cx + dBedingungen: f(2) = 0; f'(2) = 4Funktionsterm: f(x) = x^3 - 6x^2 + 16x - 16$		
78	7 A • w. A., da $x = 3$ Extremstelle von f ist, ist $x = 3$ Wendestelle von F. • f. A., $f(x)$ wechselt in $x = -1$ das Vorzeichen von + nach F hat eine Maximalstelle in $x = -1$ • f. A., da $f(x) = F^c(x) \le 0$ für $x > 0$		
139	Lehrbuch Seite 330		
	Aufgabe 2		
	2 E1 = {1; 2; 3}; E2 = {1; 3; 5} a) E1 \cup E2 = {1; 2; 3; 5} b) E1 \cap E2 = {1,3} c) \overline{E}_1 = {4; 5; 6}		
167	Lehrbuch Seite 406		
	4 a) X: Anzahl der Extremsportler in einer Stichprobe vom Umfang n =100; p = 0,02 Erwartungswert μ = n · p = 2		
	b) Standardabweichung $\sigma = \sqrt{n \cdot p \cdot (1 - p)} = 1.4$		
	c) $P(0.6 \le X \le 3.4) = P(1 \le X \le 3) = 0.85896 - 0.13262 = 0.72634$		

Seite	Verbesserung		
175	Lehrbuch Seite 424		
	1 b)	defekte Geräte pro Tag: $\frac{1200 - 1138}{6}$ = 10,3	
		99 %-Prognoseintervall, c = 2,58: [2,05; 17,95]; zugehörige Anzahl: 3; ; 17	
		10 und 11 liegen im Prognoseintervall, die Aussage ist also verträglich.	
	c)	95 %-Prognoseintervall, c = 1,96: [3,96; 16,04];	
		zugehörige Anzahl: 4; ; 16	
		7 liegt im 95%-Prognoseintervall	
	4 a)	90 %-Prognoseintervall: [10 - 1,64 · 3,10; 10 + 1,64 · 3,10] = [4,92; 15,08]	
		ganzzahlig: [5; 15]	
		Das Ergebnis 12 ist verträglich mit den Angaben.	
	b)	95 %-Prognoseintervall: [3,92; 16,08]	
		Das Ergebnis 18 weicht signifikant vom Erwartungswert (μ = 10) ab.	
179	Lehrbuch Seite 435		
	1 a)	Diagramm	
	b)	Konfidenzintervall zu h = 0,4:	
	c)	Die Ellipse wird schmaler im Vergleich zur Ellipse für 95 %.	