Mathematik — Jahrgangsstufen 1 und 2 Erhöhtes und grundlegendes Anforderungsniveau

Berufliches Gymnasium Baden-Württemberg

Seite	Verbesserung
140	9 Gegeben ist die 2. Ableitung der Funktion f durch f"(x) = 6x + t; t∈ ℝ. Die Wendetangente hat die Gleichung y = 4x - 8. Diese berührt das Schaubild von f auf der x-Achse. Bestimmen Sie den Funktionsterm f(x).
247	Lösung a) Wegen $\begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}$ (Richtungsvektor von g) verläuft g parallel zur x_2 -Achse. g schneidet also die x_1x_3 -Ebene senkrecht. g verläuft parallel zur x_2x_3 -Ebene. g verläuft parallel zur x_1x_2 -Ebene. b) Wegen $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ (Richtungsvektor von h) verläuft h parallel zur x_1 -Achse. h schneidet also die x_2x_3 -Ebene senkrecht. h verläuft parallel zu x_1x_2 -Ebene. h verläuft parallel zu x_1x_2 -Ebene. c) Wegen $x_2 = 0$ im Richtungsvektor $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ von k verläuft k parallel zur x_1x_3 -Ebene.
286	Die Seite entspricht den Themen und Aufgaben des erhöhten Anforderungsniveaus (eA).
372	 Aufgaben 1 Ein Automat produziert 15 % Ausschuss. Es werden 3 produzierte Stücke zufällig entnommen. Geben Sie die Wahrscheinlichkeitsverteilung für die Anzahl der defekten Stücke in dieser Stichprobe als Tabelle an. 2 Bei der Abi-Abschlussfeier werden 100 Lose für jeweils 5€ verkauft. Zu gewinnen gibt es den 1. Preis im Wert von 100 €, zwei Preise im Wert von jeweils 25 € und 4 Preise im Wert von jeweils 10 €. Jeder, der keinen dieser Gewinne bekommt, erhält einen Trostpreis in Höhe von 1€. Frau Jung kauft sich ein Los. Die Zufallsvariable X beschreibt den Gewinn von Frau Jung. Stellen Sie die zugehörige Wahrscheinlichkeitsfunktion durch eine Wertetabelle dar. 3 Die Wahrscheinlichkeit für die Geburt eines Jungen ist 0,514. Eine Familie mit 3 Kindern wird zufällig ausgewählt. Die Zufallsvariable X legt die Anzahl der Jungen fest. Mit welcher Wahrscheinlichkeit ist X = 0; X = 1; X = 2; X = 3?

Seite	Verbesserung
412	$P(a \le X \le b) = \int_{a}^{b} p(x) dx$ $P(a \le X \le b)$
421	6 Die Abbildung zeigt die Binomialverteilung mit den Parametern n = 200 und p = 0,6. Bestimmen Sie den Erwartungswert, Sigma und die Sigmaintervalle (σ; 2 σ; 3 σ). Geben Sie die Beschriftung für die Achsen an.
451	 9 Das Aktienpaket von Frau Honess umfasst 30 Aktien der Firma Hut, 40 Aktien der Firma Geha und 55 Aktien der Firma Schmal. Die Aktienkurse liegen heute bei 38,40 €, 105,25 € bzw. 455,80 €. Frau Honess werden 55 000 € für das Aktienpaket angeboten. Beraten Sie Frau Honess, indem Sie eine Matrizenrechnung durchführen. 10 Bestimmen Sie a und b so, dass für die Matrix A = (1 a b) gilt: A² = E. 11 Gegeben ist die Matrix A = (1 - 1) . Zeigen Sie A⁵ = (1 - 5) . 12 Gegeben ist die Matrix A = (1 2 b) . a) Berechnen Sie A³ und geben Sie An an. b) Für eine Matrix B gilt: A·B = B·A. Ermitteln Sie alle Matrizen, die für B infrage kommen, d.h. die angegebene Bedingung erfüllen. 13 Berechnen Sie a, b, c und d, so dass (2 1) · (3 2) = (3 c) .
476	Test zur Überprüfung Ihrer Grundkenntnisse
	Lehrbuch Seite 384
	1
	a) $\binom{9}{5} = 126$
	b) $\binom{2}{0}\binom{7}{5} + \binom{2}{1}\binom{7}{4} = 21 + 35 + 35 = 91$
	Alternativen: $\binom{7}{5} + \binom{7}{4} + \binom{7}{4} = 91$ oder $\binom{9}{5} - \binom{7}{3} = 91$
	c) 5! = 120